WARSHALL ALGORITHM

- The adjacency matrix $A=\left\{a_{i j}\right\}$ of a directed graph is the boolean matrix that has 1 in its i th row and j th column if and only if there is a directed edge from the i th vertex to the j th vertex.
- The matrix containing the information about the existence of directed paths between any two vertices of a given graph is called the transitive closure of the digraph,
- The transitive closure of a directed graph with n vertices can be defined as the $n \times n$ boolean matrix $T=\left\{t_{i j}\right\}$, in which the element in the i th row and the j th column is 1 if there exists a path of a positive length from the i th vertex to the j th vertex; otherwise, $t_{i j}$ is 0.

(a)

(b)

(c)

(a) Digraph. (b) Its adjacency matrix. (c) Its transitive closure.

- Warshall Algorithm can be used to find the transitive closure for the given digraph.
- Warshall's algorithm constructs the transitive closure through a series of $n \times n$ boolean matrices:

$$
R^{(0)}, \ldots, R^{(k-1)}, R^{(k)}, \ldots R^{(n)}
$$

- The element $r^{(k)}{ }_{i j}$ in the i th row and j th column of matrix $R^{(k)}(i, j)=1,2, \ldots, n, k=0,1$. \ldots, n) is equal to 1 if and only if there exists a directed path of a positive length from the i th vertex to the j th vertex with each intermediate vertex, if any, numbered not higher than k.
- $R^{(0)}$ is nothing other than the adjacency matrix of the digraph.
- $R^{(1)}$ contains the information about paths that can use the first vertex as intermediate vertex.
- $\quad R^{(n)}$, reflects paths that can use all n vertices of the digraph as intermediate and hence is nothing other than the digraph's transitive closure.
- The formula for generating the elements of matrix $R^{(k)}$ from the elements of matrix $R^{(k-1)}$:

$$
r_{i j}^{(k)}=r_{i j}^{(k-1)} \quad \text { or } \quad\left(r_{i k}^{(k-1)} \text { and } r_{k j}^{(k-1)}\right)
$$

- This formula implies the following rule for generating elements of matrix $R^{(k)}$ from elements of matrix $R^{(k-1)}$
* If an element $r_{i j}$ is 1 in $R^{(k-1)}$, it remains 1 in $R^{(k)}$.
* If an element $r_{i j}$ is 0 in $R^{(k-1)}$, it has to be changed to 1 in $R^{(k)}$ if and only if the element in its row i and column k and the element in its column j and row k are both 1's in $R^{(k-1)}$
- Here is pseudocode of Warshall's algorithm.
- ALGORITHM Warshall(A[1..n, 1..n])
//ImplementsWarshall' s algorithm for computing the transitive closure
//Input: The adjacency matrix A of a digraph with n vertices
//Output: The transitive closure of the digraph
$R^{(0)} \leftarrow A$
for $k \leftarrow 1$ to n do

$$
\text { for } i \leftarrow 1 \text { to } n \text { do }
$$

$$
\text { for } j \leftarrow 1 \text { to } n \text { do }
$$

$$
R^{(k)}[i, j] \leftarrow R^{(k-1)}[i, j] \text { or }\left(R^{(k-1)}[i, k] \text { and } R^{(k-1)}[k, j]\right)
$$

return $R^{(n)}$

- The time efficiency is only $\Theta\left(n^{3}\right)$.

PROBLEM

Find the transitive closure for the given graph

The adjacency matrix for the given graph is

$$
R^{(0)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{|l|lll}
a & b & c & d \\
\hline 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]
$$

To find $R^{(1)}$, keeping the first vertex ' a ' as intermediate vertex

$$
\begin{aligned}
& \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{~b}]=\mathrm{R}^{(0)}[\mathrm{b}, \mathrm{~b}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{b}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{~b}]\right\}=0 \text { or }\{0 \text { and } 1\}=0 \\
& \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{c}]=\mathrm{R}^{(0)}[\mathrm{b}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{b}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{c}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(1)}[\mathrm{c}, \mathrm{~b}]=\mathrm{R}^{(0)}[\mathrm{c}, \mathrm{~b}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{c}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{~b}]\right\}=0 \text { or }\{0 \text { and } 1\}=0 \\
& \mathrm{R}^{(1)}[\mathrm{c}, \mathrm{c}]=\mathrm{R}^{(0)}[\mathrm{c}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{c}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{c}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(1)}[\mathrm{c}, \mathrm{~d}]=\mathrm{R}^{(0)}[\mathrm{c}, \mathrm{~d}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{c}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{~d}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(1)}[\mathrm{d}, \mathrm{~b}]=\mathrm{R}^{(0)}[\mathrm{d}, \mathrm{~b}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{d}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{~b}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(1)}[\mathrm{d}, \mathrm{~d}]=\mathrm{R}^{(0)}[\mathrm{d}, \mathrm{~d}] \text { or }\left\{\mathrm{R}^{(0)}[\mathrm{d}, \mathrm{a}] \text { and } \mathrm{R}^{(0)}[\mathrm{a}, \mathrm{~d}]\right\}=0 \text { or }\{1 \text { and } 0\}=0
\end{aligned}
$$

To find $R^{(2)}$, keeping the second vertex ' b ' as intermediate vertex

$$
\begin{aligned}
& \mathrm{R}^{(2)}[\mathrm{a}, \mathrm{a}]=\mathrm{R}^{(1)}[\mathrm{a}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{a}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{a}]\right\}=0 \text { or }\{1 \text { and } 0\}=0 \\
& \mathrm{R}^{(2)}[\mathrm{a}, \mathrm{c}]=\mathrm{R}^{(1)}[\mathrm{a}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{a}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{c}]\right\}=0 \text { or }\{1 \text { and } 0\}=0 \\
& \mathrm{R}^{(2)}[\mathrm{a}, \mathrm{~d}]=\mathrm{R}^{(1)}[\mathrm{a}, \mathrm{~d}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{a}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{~d}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(2)}[\mathrm{c}, \mathrm{a}]=\mathrm{R}^{(1)}[\mathrm{c}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{c}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{a}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(2)}[\mathrm{c}, \mathrm{c}]=\mathrm{R}^{(1)}[\mathrm{c}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{c}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{c}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(2)}[\mathrm{c}, \mathrm{~d}]=\mathrm{R}^{(1)}[\mathrm{c}, \mathrm{~d}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{c}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{~d}]\right\}=0 \text { or }\{0 \text { and } 1\}=0 \\
& \mathrm{R}^{(2)}[\mathrm{d}, \mathrm{~d}]=\mathrm{R}^{(1)}[\mathrm{d}, \mathrm{~d}] \text { or }\left\{\mathrm{R}^{(1)}[\mathrm{d}, \mathrm{~b}] \text { and } \mathrm{R}^{(1)}[\mathrm{b}, \mathrm{~d}]\right\}=0 \text { or }\{1 \text { and } 1\}=1
\end{aligned}
$$

$$
R^{(2)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{llll}
a & b & c & d \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
\hline 0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & \mathbf{1}
\end{array}\right]
$$

To find $\mathrm{R}^{(3)}$, keeping the third vertex ' c ' as intermediate vertex

$$
\begin{aligned}
& \mathrm{R}^{(3)}[\mathrm{a}, \mathrm{a}]=\mathrm{R}^{(2)}[\mathrm{a}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(2)}[\mathrm{a}, \mathrm{c}] \text { and } \mathrm{R}^{(2)}[\mathrm{c}, \mathrm{a}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(3)}[\mathrm{b}, \mathrm{a}]=\mathrm{R}^{(2)}[\mathrm{b}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(2)}[\mathrm{b}, \mathrm{c}] \text { and } \mathrm{R}^{(2)}[\mathrm{c}, \mathrm{a}]\right\}=0 \text { or }\{0 \text { and } 0\}=0 \\
& \mathrm{R}^{(3)}[\mathrm{b}, \mathrm{~b}]=\mathrm{R}^{(2)}[\mathrm{b}, \mathrm{~b}] \text { or }\left\{\mathrm{R}^{(2)}[\mathrm{b}, \mathrm{c}] \text { and } \mathrm{R}^{(2)}[\mathrm{c}, \mathrm{~b}]\right\}=0 \text { or }\{0 \text { and } 0\}=0
\end{aligned}
$$

$$
R^{(3)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{cccc}
a & b & c & d \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 1
\end{array}\right]
$$

To find $\mathbf{R}^{(4)}$, keeping the fourth vertex ' d ' as intermediate vertex

$$
\begin{aligned}
& \mathrm{R}^{(4)}[\mathrm{a}, \mathrm{a}]=\mathrm{R}^{(3)}[\mathrm{a}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{a}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{a}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(4)}[\mathrm{a}, \mathrm{c}]=\mathrm{R}^{(3)}[\mathrm{a}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{a}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{c}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(4)}[\mathrm{b}, \mathrm{a}]=\mathrm{R}^{(3)}[\mathrm{b}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{b}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{a}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(4)}[\mathrm{b}, \mathrm{~b}]=\mathrm{R}^{(3)}[\mathrm{b}, \mathrm{~b}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{b}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{~b}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(4)}[\mathrm{b}, \mathrm{c}]=\mathrm{R}^{(3)}[\mathrm{b}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{b}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{c}]\right\}=0 \text { or }\{1 \text { and } 1\}=1 \\
& \mathrm{R}^{(4)}[\mathrm{c}, \mathrm{a}]=\mathrm{R}^{(3)}[\mathrm{c}, \mathrm{a}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{c}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{a}]\right\}=0 \text { or }\{0 \text { and } 1\}=0 \\
& \mathrm{R}^{(4)}[\mathrm{c}, \mathrm{~b}]=\mathrm{R}^{(3)}[\mathrm{c}, \mathrm{~b}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{c}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{~b}]\right\}=0 \text { or }\{0 \text { and } 1\}=0 \\
& \mathrm{R}^{(4)}[\mathrm{c}, \mathrm{c}]=\mathrm{R}^{(3)}[\mathrm{c}, \mathrm{c}] \text { or }\left\{\mathrm{R}^{(3)}[\mathrm{c}, \mathrm{~d}] \text { and } \mathrm{R}^{(3)}[\mathrm{d}, \mathrm{c}]\right\}=0 \text { or }\{0 \text { and } 1\}=0
\end{aligned}
$$

$$
R^{(4)}=\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{llll}
a & b & c & d \\
\mathbf{1} & 1 & \mathbf{1} & 1 \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

The transitive closure for the given graph is

$$
\begin{aligned}
& a \\
& b \\
& c \\
& d
\end{aligned}\left[\begin{array}{llll}
a & b & c & d \\
\mathbf{1} & 1 & \mathbf{1} & 1 \\
\mathbf{1} & \mathbf{1} & \mathbf{1} & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

